This Bird is Squawking

I will document the biggest and most annoying things wrong with the airplane during the test flight here but do not plan on blogging about every repair or modification to the airplane. Mainly because I’d have to become a full time writer.

The flight tests went fairly smoothly and I finished the 40 hour phase 1 in under a month. Most of my issues were builder caused, I must admit. Either a rework or bad soldering, decision making or lack thereof, and a few “that’s good enoughs” that came back to haunt me were to blame.

I tracked these by creating a list in my phone/iPad that I could check off as I corrected the issues. The list kept growing for some time before it started getting checked off. It’s worked really well for me and actually motivates me to complete all the repairs or adjustments to get the check boxes checked. I can also make group entries into the logbook to keep track of the work.

I found that I had a lot of electrical gremlins throughout the first bit of flying. Solder sleeves are amazing little buggers that are notoriously difficult to use correctly. I used sparingly while building, but they still bit me a few times. The problem is you think the solder ring has melted completely but it hasn’t. The connection will be good until it’s subject to some vibration and then all kinds of weird things happen. My oil pressure spiked to 200 PSI, multiple random annunciations based on my discrete inputs, and a few others due to the solder sleeves. And I only have about 10 in the whole plane! I will use them now if I have good access to the connection, but if not, I’ve found using Dsub pins and heat shrink as more reliable.

I had to reposition my EGT probes, as I realized they blocked 5 out of 6 spark plugs. I had a master cylinder bolt leaking just a bit. Lots more clamps and zip ties were installed, mostly firewall forward, to avoid chafing after a few oil changes and seeing where things moved a bit too much. I had to replace the autopilot pitch servo due to a service bulletin, roll servo due to slipage, and had to reinforce the rudder trim tab mount to get it to work effectively. I chose to rewire a few engine switches and add a engine master switch, which I should have done in the first place. That all neccessitated under the panel work, a new switch panel overlay and backlight sheet. The oxygen system leaked above 1200 psi (loose connection), and a few adjustments to the door light switches have been made.

The biggest squawk is a leaking fuel tank. I am getting ahead of myself on the blog, but this was discovered post paint unfortunately. Turns out a little weeping rivet that I discovered prior to paint and thought I had fixed with the Loctite trick wasn’t fixed. In fact, it wasn’t a weeping rivet, but a pinhole in the sealant on the rear baffle. Fortunately, I spent an entire day and was able to use my borescope to provide a view and a coat hanger/tube of pro seal to apply sealant and fix the leak without taking the tank off. Not a fun job.

The engine ECU tweaks were pretty easy, although I’ve gone through four O2 sensors (leaded fuel doesn’t make them last long). I removed the air filters and just installed a mesh screen over the intakes. Speaking of intakes, one was too close to the exhaust header and a hole burned through it so that required a bit of glass work along with better heat insulation and a bit more clearance.

Lots of other tweaks and adjustments were made and most of these delayed discrepancies were taken care of during the first condition inspection performed in November last year. I do have a few more items to check off the list including new door hing covers, some finish rework on the interior windshield pillars, an intake plenum on the air conditioning condensor (more on that later), and adding a second tunnel access plate are all on the list for 2021.

Bottom line, you’re not done building when you’re done building. Flying brings on new stuff that you can’t forecast on the ground so it’s a continuous process to keep it in tip top shape. I also put some of this stuff off, as I wanted to get it flying so its been a challenge to get caught up after flying so much. I am now at a point where the regular maintenance time is decreasing vs the flight time increasing. The check boxes are all most all filled in!

Never ending squawk list

The airworthiness inspection is rapidly approaching and it’s crunch time now. This post is about as fast and deep as all the stuff I had to do.

The awesome guys on based helped me bend my control sticks to provide plenty of clearance to the instrument panel. I still hit the flap switch in the full nose down, right roll position, but if I ever have to use that stick input, I have way more concerns about dying.

I never installed the tips on the stabilizers, so I wiped the decade old dust off of those and riveted them on then laid up some glass to enclose them. Some tweaking with the heat gun was enough to get them adequate clearance and I’ll let Jonathan do the rest of beautifying them during paint.

I crawled in the tail cone. Again. After I said, “Oh, I’m done back there, I won’t need to get back there.” Hell, at this point I can’t even remember why I had to go back there. I’ll flash forward and tell you that still wasn’t the last time. Either way, here’s how I feel about doing that little shit job.

The rest of the interior went in and lights hooked up. These side panels are pretty tricky to slide in without destroying the paint. I’m happy with how they turned out. The stainless screws also look really nice.

I pulled the plane out for a good GPS and comm check. I’ll have another post about the details, but while everything worked, I have some serious interference with the ZipTip lights and my radios. For now, though, no night flying means I’m safe and legal to fly.

The back seats and carpet are all in now. I had to put a lot of velcro down but man, this Aerosport stuff is amazing. The seats are comfortable, the carpet looks great, and I’m really excited about taking folks flying in this plane!

My cover from Bruce’s came in and is freaking sweet. Fits very nicely, has orange, and the tail number embroidered on it makes it so no one can steal it and use it on their plane without me chasing them down.

I put the cowling on for a final fit check and hooked up the new AeroTherm engine heater. I’ve used these on the Diamond we fly and really like it. I didn’t like the idea of cylinder heaters and want to keep the engine heated during the winter to avoid cold starts. I know this isn’t as portable, but I’m happy with it thus far. I did have to get a very thick extension cord so it would keep tripping its internal breaker with my crappy 15 amp service in the hangar.

Finally, I weighed the fat little piggy with all of the pants and random stuff not yet on for good in their approximate place. Folks, with full interior, oxygen, air conditioning, three screens up front, and all the extras my credit rating could buy, I’m pretty happy with her girlish figure. This let me sit down and compute weight and CG figures as well. Everything turned out nicely with an empty CG of 106.4 inches.

Firewall forward finishing

There is a lot of little projects yet to be completed on the firewall forward section, so I set about tackling them. First off was safety wiring the prop bolts. I thought torquing them were hard. Well safety wiring them is even worse. Because of the limited space, you actually have to loosen them a bit, thread the wire through the hole, then re-torque them. Ugh. Anyway, it’s not pretty but it’s done. I’m convinced this flange design negates the need to safety wire since they’d all have to unscrew in perfect unison for the damn thing to fall off anyway.

Here is a picture of the custom wrenches I had made up using Joe Key’s templates.

Since I was at the front end, I went ahead and finished up the spinner installation. The back plate takes some time to bolt on as well with 1300 bolts used to hold it to the prop hub. The spinner has three plates behind the blades to fill the gaps and it took a bit of dry fitting to figure out where each one goes. WW had labeled them by number and I was wrongly lining them up with blade numbers not just the reference number on the spinner and back plate. The front of the prop hub fits into a bulkhead in the spinner and it took a few iterations of Teflon tape and sanding to get a nice snug fit with no wobble of the spinner.

The air filters were the last step for the intakes and I had been waiting on a different filter with a tilted base, allowing clearance of the tube to the filter assembly itself. This was required because of the blister I had to glass in for the air conditioning compressor. Fortunately a 10* tilt made just enough clearance and it all fit together nicely. I oiled the filters and got them put on for good or at least until the first annual.

The right intake tube is close to the exhaust, so I used some heat shielding that has an adhesive back to protect the tube. I went back and covered this with 3M foil tape and then applied RTV around the edges to secure it. I’ll monitor this during ground runs to ensure enough protection from the exhaust header.

Since I had RTV all over me anyway, I took the opportunity to finish seal up a few spots around the engine and firewall. I have spent a TON of time trying to find any little spot air could leak out of the baffles that it shouldn’t be leaking. Since the hangar is dark with the lights off, I again used a flashlight on top of the engine to highlight any little spots. It worked great and I’m hoping it pays off with adequate cooling once flying. It’s impossible to be super clean and fancy with this stuff, but I kept most of the mess on me instead of on the engine.

So many of my electrical connections are oddly shaped so getting a boot to fit hasn’t been easy or even possible. I used a 3M product to paint electrical tape onto the hot studs just to keep a surprise shock chance low. Not quite as good as boots, but better than nothing.

Lots of zipties up front still being added as I just see spots here or there that could use some extra security. I may add wire wrap that is rated for high heat to clean it up, but not sure if I care or want to spend the time on that quite yet.

Multi-tasking is key at this point so I setup the vacuum pump on the aircon system while RTV was setting up. All of the lines and connections are secured so I could finally vacuum the system to perform a leak test and evacuate moisture from the system. The ports are just behind the baggage bulkhead and pretty easy to get to. I set up the pump and let it run for about an hour and a half to get moisture out then closed the pump off and let the gauges sit all night long. The next day I returned to see a perfect vacuum still holding, so that is a huge win!

The last two projects up front were some additional glass work on the plenum and a ramp for the aircon compressor. The plenum was designed to be sealed to the cowl around the oil dipstick, but I didn’t like the idea of air potentially leaking out of the plenum through the oil door or into the engine area. I cut up a sports drink bottle as a mold and roughed up a little funnel to fit over the dipstick. The dipstick will have some foam tape sealing the bottom of the funnel. It didn’t come out as pretty as I wanted, but it’s functional and I can always clean that up a little down the road.

The air ramp was a little easier than I expected. On the left side intake, the aircon compressor causes the cooling ramp and induction intake to need a cutout and I wanted to create a little blister to help direct all the air possible into the cooling and intake ducts. I shaped a foam block and used packing tape to secure it to the cowl. I used some carbon fiber to lay up a rough fairing then cleaned up the edges after it set up. This is attached via two screws and should provide a nice air flow deflection that is simple to use. I plan to create a final piece of bulb seal to fully seal the cowl to the engine portion helping minimize air pressure loss while providing flexibility for engine movement.

Brains and speghetti

Hanging the engine seemed like a big step, but wiring it and plumbing it is the real work.  I knew the connections to the ECUs and sensors would be a big job, but I thought the days of electrical wiring were mostly over.  Boy was I wrong!

I brought it on myself, really, as I knew using SDS would be deep in a mess of wires resembling an Olive Garden menu.  It’s absolutely worth it though, as I’ll wind up with a powerful and efficient (relatively speaking) engine with lots of tuning ability and choice of running LOP with a simple flip of a switch.

I started by screwing the ECU relay box to the ECU case itself with a few screws tapped into the ECU case.  This creates a tidy package that will bolt into the cabin side behind the subpanel.  I also put the mixture knob relay box on with double sided tape to secure everything in one palce.  I had already mounted rails with nutplates in the subpanel.

SDS supplies a harness with labeled wires and prefabed Dsub connectors.  I fished all the wires that will go firewall forward through the stainless penetration and quickly realized there was no where near enough room to run all the wires.  I still had the CHT/EGT and other EMS wires that needed to come through for the AFS EMS plus a few other misc wires.  Without regards to symmetry, I decided to scrap more of the expensive firesleeve penetration kits and just run with a silicone high temp grommet and fire stop.  The plans call for a plastic grommet and fire stop, so I’m still above minimums here.  Two more holes painfully drilled and deburred in stainless steel allowed enough room for the tangled mess.

I underestimated the amount of connections and sensors needed for everything!  It seemed the wires never stopped and I always had more hanging waiting for their turn in the spot light for a trim and terminal.  Injectors, coils, EGT, CHT, hall sensor, TPS, MAP, AFR, oil pressure, fuel pressure, original bell telephone…okay not the telephone.  I routed everything as neatly as I could keeping in mind strain releif, heat sources, and interference from other wires.  I’m sure someone could do it better or neater, but this is working for me and I’m not really trying to win a neatness contest at this point.  I chose to use zipties for now and will experiment with a 500*F rated sprial loom from McMaster Carr to clean everything up a bit down the road.

I focused on the firewall forward and finally had everything connected and pinned out.  I created a carbon fiber plate for the THREE MAP sensors, yes, three of them.  I also used Bryan at Show Planes’ transducer mounts to avoid more stuff on the firewal and create less plumbing lines.  I also worked on the spark plug wires which use MSD terminals and wires.  They were pretty easy to make up and I went ahead and drained the preservative oil out of the cylinders to install the spark plugs with the adapters and anti-seize.

I did run across my first dumb ass moment when I relized my perfectly placed EGT probes are not perfectly placed.  They are smack dab in the middle of the spark plugs and thus need to be removed to change the plugs.  Not the end of the world, but will add maintenance time down the road.  If I get tired enough of them, I’ll remove the exhaust, weld up the holes and reposition them.  Speaking of welding, I had Charlie on base weld up a mis-drilled EGT hole (interfered with the induction intake) and the AFR bung.  As always, he did an amazing job for the reasonable cost of a few cases of beer for the shop.

Fast forward a week or two, I finished the brains by working cabin side of the firewall underneath the panel.  I just love contorting my body in some ungodly yoga pose upside down while having my face inches away from my work area to work under the panel!  Fortunately, the wife came out and stood by my side as an assistant for the three hours it took me to terminate all of the extra wires inside.  I had to pin out a few switches, mixture knob, sensors, grounds, power, and signal wires for the ECUs and EMS.  It wasn’t fun, but it went well and I got all of the connections made correctly with her help and a lot of triple checking.

We also remounted the air oil separator on stand offs I created and bolted the improperly drilled holes to seal the firewall.  Mounting the ECUs was a rediculously difficult endeavor but thank goodness I had already installed the rails and nutplates.  Without those, it would have been impossible, truely.  I hope I don’t have to get those boxes out very much if ever at all.  The wiring needs some tidying up underneath that I’ll do another day but at long last, it’s all hooked up.  The final step was to fire up the master switch and check out the ECU programmer now that it is installed in the panel filling the last hole.  It’s at long last a complete instrument panel!

Splash of color and an Oops

After returning from our trip up north, only a few days passed until we received a big package with a piece of art inside.  Our (second) propeller has arrived!  Whirl Wind delivered about a week late, but with prior coordination and communication with me so I was super excited to see what it looked like.  As chronicled earlier in the build, I purchased a propeller but decided to sell it instead of it hanging on the wall for three years before I was ready for it.  Joe Keys, you can’t have this one.  I knew I wanted another WW and the HRT blade is now a refined blade profile and is simply stunning.  Our orange was color matched and looks great with the black and nickel leading edge.  For now, the prop will go to a friend’s hangar to hang out with the wings until we move to the airport.

Adding even more color, I finished up the last of the wire bundling on the cabin sidewalls and went ahead installing the side panels with leather inserts.  They had been trimmed and painted for some time but I held off pulling them in and out until I knew I was done.  I spoke to Vic Syracuse who will be my DAR for airworthiness inspection prior to putting these in, as I wasn’t sure how open he wanted the airplane.  He advised to have it essentially flight ready except for rear pax tunnel cover (to inspect the elevator bell crank), cowling, and tunnel access panel.  This is the first time I’ve hooked up the foot well lights and I’m really pleased with the amount of light they give off.  It’s just enough for convenience while not quite enough to perform surgery on the floorboard.

Unfortunately, not all of the gods were looking favorably upon this new addition and when I closed the door, the pins interfered with the oxygen ports, thus not allowing the doors to latch properly.  Turns out I have the ports ½” too close to the door frame.  Darn.  Well, I said, a lot more than that and maybe one or tools took flight across the garage with no lasting damage.  My blood pressure through the roof due to my ignorance and stupidity of not being mindful to this interference, I weighed the options of replacing $500 panels or coming up with a patch.  I can’t make the pins shorter since they wouldn’t function correctly with the Plane Around latch mechanism.  I had already had to glue a piece on the pilot side panel and reinforce it with a bit of epoxy.  The seam was easily hidden and paint covered everything, so I was hopeful I could repeat the process.  A call to Will at Aerosport Products equaled a few scrap pieces of plastic heading my way.  An evening of creating two patches and a bit of filler, and I’m back on track.  If you look close enough to tell the patch is there, you probably won’t be flying in my airplane again; kindly go away and take your judgement with you.

Meanwhile, I applied the 3M carbon vinyl wrap on the seat pans to clean those up.  I figured out quickly paint was not going to hold up there.  Brian and Brandi had great results with the wrap material, so I figured it’s worth a shot.  I then put a strip of anti-skid tape to facilitate stepping on the seat ledge while getting in and out.  It really cleaned up the area nicely.  I also shimmed the outboard pilot seat rail, as the bracket above the gear mount was a 1/8” proud causing the rail to bend when screwed in.  Not sure what happened there, but with a few washers underneath it’s nice and straight and secure.

I quit trying to cheat the system and installed the ELT antenna on the top of the tail cone.  I tried every which way to hid that hideous monstrosity of an antenna but my conscious told me that it is probably the most important antenna on the airplane thus deserved its place per the install manual.  I’m sure it will grow on me.  The idea of burying it in the tail cone or tail fairing was tempting, but a talk with my DAR convinced me otherwise.

Continuing in the cabin, I spent an afternoon applying the headliner material to the fiberglass shells from Aerosport that had been trimmed for quite a while now.  It was a bit of a messy job with the spray adhesive, but not difficult at all.  I took my time and kept my fingers clean which resulted in a darn near perfect result.  After putting enough Velcro to hold a car upside down, the headliners slid into place and really dress up the cabin cover now.  The color matches great and was overall a lot easier than trying to smooth and paint the cabin top itself.

Finally, the rear bulkhead cover was back from Aerosport with the matching leather and embroidery.  I used Velcro to mount it to the bulkhead panel after installing a grill for the air conditioning return.  It turned out great and I’m really pleased with the fit and finish once it was all installed.  The cabin is really coming together with the rest of the rear side panels installed and inserts in place.  It’s tempting to put the carpet and seats in, but I’m holding off to keep them in good shape and clean while I finish building.

Upfront, I had an epiphany about my shotky diode and how it should be used to protect my engine bus.  The goal was to isolate the engine bus from the rest of the system such that I can turn the emergency power switch on (direct connection from battery to engine bus) and not have the electrons go to the man bus.  This essentially covers a short somewhere in the system or electrical fire behind the panel and gives me a bit of redundancy on keeping the electrically dependent engine going.  I wasn’t placing it on the proper power lead on the schematic, so it finally dawned on me it should go from the main power supply instead of the backup lead.  So, I installed it on the firewall and will work on a solid copper bar to hook everything up.

Punching the punch list

There are a lot of little jobs that go along with the big jobs on building a plane.  I’m trying to use my time efficiently while waiting on the engine to knock out a bunch of them.  The first was fixing the arms and servos on the heat ducts up front.  An order to ACS and a few minutes at the band saw and the servos for the heat and oil coolers were attached properly and pots adjusted for full travel.  I also spent an hour trouble shooting a bad pot for the rear heat duct, as I have a switch that allows either the front or rear rheostats to control the servo and the rear rheostat was inop.

I cussed and bled in equal amounts installing the last of the seat rail brackets now the gears are on.  The nuts and bolts are not easy to access at this point, but you have to wait in order to install the gear bolt.  I also put in the last bolt and custom spacer for the GPU plug which helps reinforce the receptacle by attaching it to the seat pan.

I ignorantly forgot to install the transponder antenna before buttoning up the tunnel, so I had to take the center console, tunnel cover, and lower instrument panel off to get down in there.  Of course I burried it near the core of the earth which made access tricky to say the least.  I was able to squeez my hands down there and got it all bolted on with the coax attached.  I knew I had left one fuel line untorqued but couldn’t remember which one so checked all fuel line fittings for proper torque.

The last task in the rear tunnel is to secure the aircon lines which I did with some hose clamps and edge grommet material.  Again, not fun to get to the hardware but it was doable and will rarely if ever be removed.  The lines are now secure and fit nicely in the tunnel, I’m glad I didn’t run them down the side of the fuse.  I also secured the last little sections of the O2 lines in the tunnel.

My ELT antenna placement has been a topic of disagreement on VAF, as I really wanted to avoid mounting it on top of the tail cone.  It’s big, ugly, and ugly.  Mainly, though, it’s ugly.  It’s also essential to my life and the lives of my passengers should the worst happen and we have an accident, so I guess it’s important to do it right.  I debated on doing some reception tests with it mounted internal to the tail cone, but honestly, I just got lazy and decided it really isn’t that ugly.  In the end, I chose to do it the right way and put it on the top of the tail cone.  The cable was secured along a bulkhead and the last of the wiring clean up for the O2 tank / ELT was completed.

I love spending time wiggling back into the tail coffin, I mean cone, so I made a fort with blankets and towels and dove in to attach the OAT sensors to the ADAHRS and finish securing tail cone wiring.  I put the OAT sensors below the access panels underneath the horizontal stab since I had all of my wing wiring complete and for shorter wire runs to the ADAHRS.  Since they have to be calibrated anyway, I’m not too concerned with exhaust from the engine affecting them too much.

The O2 tank was put back in for good and connected to all of the lines.  I also attached the pitch auto pilot servo to the bellcrank and will connect the yaw servo once the tail feathers and rudder cables are rigged at the hangar.  That is the last task in the tail cone and can be completed without having to crawl all the way back there.  It’s going to be motivation in life to keep from getting fat or have a small child that can slide back there for maintenance, it’s a very tight fit with all the extra stuff I put back there.

More zip tie work on the side walls as I cleaned up all of the wire bundles.  I was lazy and didn’t lace them.  If you don’t like that, you go build your own damn airplane!  Lots of zip ties.  Overall I’m happy with the wire runs, I was able to keep coax with mainly data / signal wires and have the high current ones seperated.  I have seen plenty of aircraft with everything bundled together without issues, so I think it’s more important to terminate and ground properly than anything.

The pitot / AoA tubing needs to run across the fuselage from the left wing to the right sidewall, so I put two holes in the tunnel and used free holes from the fuel line anchors to run the blue and green tubing.  The wing is already plumbed, so these lines will connect with those from the wing with two connectors and be done.

Finally, I put the 30 amp Schottky diode on the firewall between the shunt and engine fuse block.  I had this in my electrical design but just in the wrong location.  It provides redundant power input to the engine fuse block only, keeping it from backfeeding the rest of the electrical system.  The power comes in from the emergency engine power switch which comes from the battery to the fuse block.  Big picture, it is a redundancy for the single point of failure of the master contactor or short in the system.  A complete electrical failure or engine stopping SOP will be to turn off the master switch (leaving PFD, MFD, and G5 operating on independent back up batteries) and switch on the emergency engine power switch.  If the battery has any juice at all, it will go only to the engine fuse block.

Fans of all shapes and sizes

Two jobs still linger before I can rivet the front skin on; defrost fans and bolting in the support bar.  The defrost fans were pretty simple, as I already had the wiring in place and holes cut.  I just needed to drill screw holes and mount them up.  Although a bit tough to get to, they were eventually bolted in and tested out.  I probably could have gone smaller or lower CFM, but go big or go home.  I shouldn’t have any fogging issues!

The support bar was one of those jobs that I have put off due to dread.  Since I molded the overhead switch panel into the cabin top and overhead console, the access to the four screws going through the cabin top is extremely limited.  Added to that is the hunky chunk grip of wires I have running up the bar to the overhead.  My dad was in town for a few weeks so I decided to get his help and tackle the task.  We were able to get the first two screws in pretty easily by sliding the wire harness to the empty side.  I put the nuts on finger tight and then had to mulitlate two sockets to fit up agains the switch panel since it was so close fitting.

The other two screws were a bit more challenging, as I had to slide the wire between the screws now and wrangle the washer and nut around them but beside the switch panel.  As with a few jobs, a lot of cuss words were uttered, a tool might have gotten tossed gently onto the floor, and after a lot of sweating and questioning why I didn’t just buy a Cirrus later, it was completed.  I’m glad I won’t be taking this apart regularly.

All that cussing and sweating just primed me up for the next job, riveting the upper forward fuselage skin onto the structure.  Since dad was here to shoot from the outside, I grabbed my PPE and dove under the panel in one of the most uncomfortable positions I’ve ever been in since I was born.  The rivets went in smoothly and we were able to knock it out together in a few hours, but man it is literally a back breaker.  I had positioned all of the avionics so I could reach the rivets, but it was still tight.

For anyone reading this that hasn’t reached this point or is considering building a 10, PLEASE TAKE THIS AS A PIECE OF WISDOM HANDED DOWN!!!  Do NOT rivet the forward fuse / skin on until AFTER you have all of your avionics and wiring in!

I can’t imagine spending days laying like that running wires, terminating connectors, and trying to bolt crap onto the subpanel.  I kept the structure and skin off as long as possible and was able to simple walk around the avionics bay to complete everything.  It would have taken me twice as long to complete the wiring if I had followed Van’s plans.  I took the opportunity while under the panel to add just a few more zip ties to the wiring runs that I had already permanently secured.  It’s not immaculate, but I’m very happy with my housekeeping and wiring runs.

It’s cool to see the batwings gone now up front and the plane is really looking like a plane!  I put the PFD/MFD screens in and tidied up a few things which at this point completes the avionics.  All components have been installed and successfully tested sans the ECUs which will come with the engine in July.  I’m trying to minimize the time spent playing with avionics, because to be honest, I won’t get any building done if I’m swiping and experimenting with instrument approaches to JFK!

Finally, all of the aircon relays came in and I was able to properly test the system without the compressor, of course.  The condenser fan that I upgraded as part of the redesign really pumps some air and I’m really optimistic that it will produce good cooling for the condenser.  I installed an Aerosport headset hanger on the overhead console panel and reinstalled the panel to enclose the overhead.  With it all sealed up now, the cabin fan is very effective, even on low, at pushing air over the evaporator and throughout the cabin.  On high, it’s more air than I get through the vents in my car, so I’m again optimistic that the aircon is going to be very effective even on hot muggy days here in the south.

Next up will be the windscreen followed by getting the landing gear on.

Cool Colors

I have fully recovered from the traumatic smoke incident and have made progress on completing initial testing on all of the electrical components in the plane.  I buttoned up the tunnel and got the tunnel cover and lower panel console installed.  I am lucky but allowed JUST enough length in wiring for the components on the lower panel including O2, aircon, and cabin heat controls.

The center console was next to install and went in pretty easily all things considered.  I finished odd jobs with the audio jacks, USB power port, and the wiring runs on top of the tunnel cover to get it all cleaned up.  I also mounted the throttle quadrant for good and fabricated a bracket to route the throttle and prop cable to the quadrant.  All of the O2 lines were hooked up and the fuel selector was verified in the correct position corresponding to the selector.

I haven’t installed the front seat O2 ports, so can’t test the oxygen system completely, but the power and back light input functions properly as do the rear controllers, so I’m optimistic it will all check good.  The only item that gave me a bit of trouble was the aircon. I have the aircon fuse block (bus) powered via a 40 amp relay and master switch to allow for rapid load shedding should I need it.  The switch, relay, and control head all works but I wasn’t getting either fan to come on.  I double checked all connections and wiring runs were correct to include the drier, high pressure switch, and thermostats.  I should have at least gotten the cabin fan coming on but the 24v relay wasn’t clicking on for the selected speed.  That’s right, the 24 volt relay.  Not the 12 volt relay, the 24 volt relay that I’m expecting my 12 volt system to activate.  Dammit.  It took me sitting in the back reading voltages for about 15 minutes with Laura at the control head to figure out the error.  I never put two and two (or 12 and 12) together, so grabbed two spare 12 volt relays and swapped them out.  Sure enough, proper function of the cabin fan and condenser fan!  I ordered new relays and swapped them all a few days later.

Meanwhile, I received two big boxes full of leather upholstered seats and goodies from Aerosport!  Andrew has been pretty patient with me and man did it pay off!  The seats came out perfect and just what I had imagined.  The orange stitching looks great on the black and matches the leather I sourced perfectly.  They made up the side panel inserts as well as the stick covers and armrest pad, all looking very high end.  I couldn’t help but build up the front seats to see what they look and feel like.

The back seats came out just as awesome as the fronts and feel super comfortable for passengers.  I cannot say enough great things about Aerosport’s stuff, except for their prices!  You do get what you pay for, however, and this is an area that I didn’t want to go cheap on.  Andrew changed up the plan a bit on my front seat belt brackets by designing and 3D printing a cover for the bracket.  This worked out, as I had to open the bracket and widen the belt channel about 1/16″ to get the belt to retract easily.  If Aerosport had done the leather like I had asked, I would have had to pull the entire seat back cover off and I’m sure it would not go back on as well as they have done it.

The left rear seat bottom cushion was the only hiccup, as the seat belt receptacle doesn’t quite fit in the slot they sewed.  Andrew is already on it and I sent the cushion back for modification along with the rear bulkhead substrate after cutting the aircon return vent hole in it.  They then covered it in leather and embroidered the EXPERIMENTAL in matching orange which looks awesome.  The cushion, bulkhead, and new glare shield will be on the way to me in a few more weeks.

Next priority is to finish the remaining items up front and in the back so I can rivet the last skins on and keep the new interior furnishings clean as we finish the build.

The Magic Smoke

Aircraft avionics are powered by a mystical, magical smoke that is contained inside the fancy boxes and wires that make up the complete system in a little airplane.  This smoke is very precious to an aviator and should not be released out into the atmosphere under any condition.  Once it has escaped, the only way to recapture it is to spend many, many monies soaked in tears.  Therefore, it is imperative that when flipping the master switch on for the first time, all efforts to contain this magical smoke are made to avoid crying and empty bank accounts (again).

I spent each minute working on the wiring also tracing paths and double checking all of my runs and connections against the wiring schematic, manuals, and common sense.  I also dedicated an entire evening to looking everything over, pulling on connectors to ensure good crimps, tidying up the last little stragglers, and ensuring that all un-terminated wires were in that state for a good reason and properly labeled/protected from short circuiting.

Using the ACM means I can’t just pull all the breakers and turn one on at a time.  Unfortunately, I have to power up the whole system then get a screen going to electronically trip each breaker, by then a little late for an emergency.  I was confident that the expensive bits including screens and components were all fine, as they were bench tested from AFS.  But, there is always a chance that the extra stuff and main power distribution was wrong since I designed and built that.  Looking back, I could have disconnected the power wire to the ACM until after I confirmed the main distribution system worked, but I’m jumping ahead.

At long last, I ran out of excuses to delay the inevitable and decided tonight was the night to flip the switch and see what I had.  The plan was to have Laura help me monitor the plane and keep an eye out for that magic smoke.  I walked her through the plan to quickly flip the switch on and off, we talked about what we’d expect to hear and see, and the worst case scenario of a big spark or smoke.

I held my breath and flipped the master switch on and then quickly off, just as briefed.  We didn’t hear any notice, no clunk of the contactor, no fans, no screens flickering or anything.  Hmmmm.  Laura said maybe the flip was too fast.  Good point, maybe so.  Okay, I’ll try again for 1 second and then turn off for good if nothing powers on.  Master switch on……..

PPPPPPpppppppsssssssssssffffffffffftttttttt goes smoke!!!!!!

I heard it before I saw it.  None of the counseling says you hear the smoke before you see it and it made the experience that much more traumatic.  But as promised, a small, thick stream of the magic floated from the firewall towards the ceiling laughing at me and my meager attempt to contain it.  Well shit.

Needless to say, I flipped the switch off as soon as I heard/saw the smoke and quickly went into problem solving mode.  First question, what smoked?  It was pretty obvious from the melted dripping insulation the jumper wire on the main contactor had rode the lightning.  It connects the coil terminal to the hot terminal.  But why?

Take a look at the picture below and tell me where Waldo is.  The top contactor is the ground power receptacle contactor which is not hooked up at the time.  The bottom contactor is the master.

Did you notice the diodes?  Well good for you know it all smarty pants.  I sure as hell didn’t.  And why would I?  These came from B&C right out of the box!  It turns out the diode on the master contactor was installed by B&C backwards, essentially allowing a short to ground to happen when I turned the master switch on.  Power went through the diode the wrong way, through the switch, to ground and fortunately the jumper wire was the thinnest gauge so acted as a fuse and burned.  Since the power went the wrong direction, the contactor never closed and no power was delivered to the aircraft.

After confirming with Parish, I canned (cannibalized) the diode from the GPU contactor and installed a new jumper on the master to repeat the power on test.  I confirmed the polarity of the diode, checked continuity and voltage on all connections again, and decided to disconnect the ACM from the firewall pass through, limiting the exposure to the expensive bits until the magic smoke is stuffed back in where it belongs.

The third time was the charm, and the reassuring clunk of the contactor resulted in no smoke and positive voltage just where it should be.  I connected the ACM wire and saw the screen flicker to life with the AFS logo, what a beautiful sight!!!  I flipped the avionics master on to watch all of the other screens power up and soon we were basking in the warm glow of synthetic vision, calibration warnings, annunciations, and confused maps looking for GPS signals.

Each circuit was tested with the multi-meter or device if it was connected.  Some were just reading voltages, such as lights since the wings aren’t installed yet.  My only squwak was the strobe and nav switch wires being reversed, which I took care of by pulling the overhead panel and making the correction.

I cannot describe the joy of seeing all of this powered up and finally a working product.  I have spent years dreaming of having a setup like I have and a lot of work and money went into getting to this point.  I have a lot to learn, figure out, and get proficient at!  I am so excited to get behind these screens and put them to work on all kinds of adventures.

Most of all, I’m lucky that I only let a little bit of magic smoke escape and was miraculously able to stuff it back in where it belongs!

Let me see that glass

At this point, I’m out of wires to run in the plane and about out of wire from my workbench!  I made the call to rivet in the forward fuselage section structure so that the bundles could be zip-tied and I could move forward with putting the panel and avionics in for good.  (I actually riveted this in before doing the firewall insulation, but it was easier to type in this order.)  As with most big things, it was very anti-climactic and completed in about 15 minutes.

I put the carbon fiber frame and back plate in and got it all screwed together in the right order.  All of the switch panels were hooked up for good and along the way, bundles were tidied up as much as possible.

The last major task for wiring was the overhead console and lighting wire run.  The front structure (now in) and skin has to be installed before I can run the wires down the support bar (powder coated black with the engine mount).  I wanted to keep as much access open as I could to finish up the avionics so I worked out a way to bend the skin upwards by riveting the center rivet line only.  Laura came out to work her magic behind the rivet gun and assisted in getting the wires through the bar and the bar installed.  It was a bit tricky feeding everything through the skin but worked out well in the end.  I did elongate the slot in the skin since my overhead switch panel prevents the bar from going in at the bottom first.

I set about connecting the wires from the overhead since I had already pre-routed them and installed terminals as needed since access would be difficult once the forward skin is in place.  Glad I did that, because I could never have pinned them out as they were after the skin and bar were installed.  The back lighting wires were all solder sleeved together to the power supply and the positive wires for the power supply, start switch, and O2 controller back lighting were all ran to the dimmer.  After a lot of observing and double checking, the only wires left unterminated are those going to the EMS/ECUs (I won’t have the ECUs until July) so nothing left other than starting to test stuff out!

The lighting control module (LCM) and instrument back lighting will be on the always hot bus so I was able to hook my bench power supply up to test it.  I was pretty nervous as there are a lot of complicated wires on the LCM and I was afraid of knowing where or how to troubleshoot an issue.  I shut the doors, turned on power and held my breath.  Opening the door should have turned all the lights on but it just made them flash.  The foot well dimmer was hooked up to the overhead and the back lighting didn’t work at all.  Fan-f**king-tastic.  Great start, Tim.

My skills at troubleshooting are more advanced than my confidence, and I was able to correct the wiring on the dimmer module (I had mislabeled the potentiometers) and figure out the back light power supply had a solder sleeve that didn’t solder all the way causing a bad connection.  Those were corrected and I had two out of three working.  The back lighting looks magical (yes, I said magical) and I sat in the dark for five minutes ooohing and ahhhing at myself.  The overhead dimmer and foot well dimmer circuits were now working and I could see how well Sean’s (Plane Around) LEDs illuminate the cabin.  The door lights and switches were still not working, though.  As soon as the door opens, I could hear the relay click causing the lights to turn off.  It turns out I had added an extra ground to the override switch and it was immediately overriding the timer in the LCM.  I corrected that and at the end of the evening got to see the fruits of my labor on the LCM as everything worked exactly like it should!

It’s finally time to slide all of the pretty glass screens in place and see what it looks like all fired up.  The cutouts on the panel inserts are exactly the size needed, so clearance was a bit tight.  Pretty soon, I had all three screens in place along with the IFD slid into the tray.  The G5 was installed and I hooked up the last two fittings for the pitot static system and got the tubes plugged in.  The PFD was a tight fit and required several attempts and getting all the wire bundles situated just right on the ACM to allow the connectors from the screen to fit without crimping.

Man, does this panel look awesome!!  I have spent literally years designing the layout and dreaming about this very moment.  I couldn’t be happier with the way it turned out.  I’m really looking forward to sitting behind it and having great adventures with a massively capable avionics suite that is just as suitable for fun VFR flights as it is hard IMC.  The carbon is a great look, the overlays are perfect, everything is in reach, and it is a real show stopper!

I also hooked up the lower console panel back lighting just to see how it works but won’t get the rest of the components connected until after power is applied.  That is the next big step, so stay tuned!